Solow model
16MA4a
Kenji Sato mail@kenjisato.jp

library(ggplot2)

Model parameters:

alpha = 0.3

delta = 0.05

g = 0.02

n =0.01

s =0.4

and initial capital per unit of effective labor:
k0 = 0.1

Cobb-Douglas production function in its intensive form:

prod_func = function(k){
return(k~alpha)
}

How to visualize?

karr = seq(from=0, to=1.0, length.out=200)

gplot(x=karr, y=prod_func(karr), geom='line') +
labs(x="Capital per AL", y="Cobb-Douglas")

1.00-

0.75-

Cobb-Douglas
o
3

0.25-

0.00 0.25 0.50
Capital per AL

Simulation parameter:


mailto:mail@kenjisato.jp

dt = 0.01 # controls prectision of approximation
t_max = 100 # simulation for t_mazxz years

The master differential equation:

k(t) = sf(k(t) — (6 + g +n)k(t)

. and its discrete-time approximation:

k(t + At) — k(1)

L = k() = (6 + g+ ()

or equivalently,

E(t+ At) = k(t) + At[sf(k(t)) — (8 + g + n)k(t)]

Now the code.

solow_update = function(k){
k + dt * (s * prod_func(k) - (delta + g + n) * k)
}

This naive implementation does work.

t = seq(from=0, to=t_max, by=dt)
simulation = as.data.frame(t)

simulation[1, "k"] = kO
for (i in 2:nrow(simulation)){
simulation[i, "k"] = solow_update(simulation[i-1, "k"])

}

ggplot(simulation, aes(x=t, y=k)) +
geom_line() + labs(x="Time", y="Capital per AL")



10.0-

75-
|
<
@
= 50-
g °
S
S
O

2.5-

0.0-

0 25 50 75 100
Time

It seems like the capital per unit of effective labor will eventually converge to a fixed value. You can find this
“fixed point” by solving ...

0=sf(k)—(g+n+9)k
We get

1

s =
kK= ————
<g+n+5>

kstar = (s / (g + n + delta))"(1 / (1 - alpha))

Let’s check if this is the limit.

ggplot(simulation, aes(x=t, y=k)) +
geom_line() + labs(x="Time", y="Capital per AL") +
geom_hline(yintercept=kstar, linetype="dashed") +
geom_text (x=0, y=0.95%kstar, label="kstar")



Capital per AL

0 25 50 75 100
Time

Exercise

Pick any initial k£(0) above k*. Verify that the level of capital per unit of effective labor falls down to k*.

R Notebooks

I wrote this handout with the help of R Notebooks, which is included in a recent update of RStudio. To

reproduce this handout yourself, install the latest RStudio and open the source file distributed on my course
website.

With R Notebooks (or more generally tools that support literate programing), you can integrate documents,

codes and output including figures in one place. You can drastically reduce probability of making such
mistakes as

o forgetting to update the graph after making a slight modification to the code, or vice verse,
« forgetting to update the code after changing column names in the data.

After a modification to any part of data or code, you must test whether the integrity of your codes you had is
maintained. R Notebooks make it straightforward.



	Exercise
	R Notebooks

